
Page 1 of 11

Software quality

6.1 Introduction: In the context of software engineering, software quality refers

to two related but distinct notions that exist wherever quality is defined in a

business context:

 Software functional quality reflects how well it complies with or conforms

to a given design, based on functional requirements or specifications. That

attribute can also be described as the fitness for purpose of a piece of

software or how it compares to competitors in the marketplace as a

worthwhile product;[1]

 Software structural quality refers to how it meets non-functional

requirements that support the delivery of the functional requirements, such

as robustness or maintainability, the degree to which the software was

produced correctly.

Structural quality is evaluated through the analysis of the software inner structure,

its source code, at the unit level, the technology level and the system level, which

is in effect how its architecture adheres to sound principles of software architecture

outlined in a paper on the topic by OMG.[2] In contrast, functional quality is

typically enforced and measured through software testing.

Historically, the structure, classification and terminology of attributes and metrics

applicable to software quality management have been derived or extracted from the

ISO 9126-3 and the subsequent ISO 25000:2005[3] quality model, also known as

SQuaRE.[citation needed] Based on these models, the Consortium for IT Software

Quality (CISQ) has defined five major desirable structural characteristics needed

for a piece of software to provide business value: Reliability, Efficiency, Security,

Maintainability and (adequate) Size.

Software quality measurement quantifies to what extent a software or system rates

along each of these five dimensions. An aggregated measure of software quality

can be computed through a qualitative or a quantitative scoring scheme or a mix of

both and then a weighting system reflecting the priorities. This view of software

quality being positioned on a linear continuum is supplemented by the analysis of

"critical programming errors" that under specific circumstances can lead to

catastrophic outages or performance degradations that make a given system

unsuitable for use regardless of rating based on aggregated measurements. Such

programming errors found at the system level represent up to 90% of production

issues, whilst at the unit-level, even if far more numerous, programming errors

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Quality_(business)
http://en.wikipedia.org/wiki/Functional_requirements
http://en.wikipedia.org/wiki/Product_(business)
http://en.wikipedia.org/wiki/Software_quality#cite_note-1
http://en.wikipedia.org/wiki/Non-functional_requirements
http://en.wikipedia.org/wiki/Non-functional_requirements
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_quality#cite_note-2
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_quality_management
http://en.wikipedia.org/wiki/ISO_9126
http://en.wikipedia.org/wiki/Software_quality#cite_note-iso25000-3
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/CISQ
http://en.wikipedia.org/wiki/CISQ
http://en.wikipedia.org/wiki/Business_value

Page 2 of 11

account for less than 10% of production issues. As a consequence, code quality

without the context of the whole system, as W. Edwards Deming described it, has

limited value.

To view, explore, analyze, and communicate software quality measurements,

concepts and techniques of information visualization provide visual, interactive

means useful, in particular, if several software quality measures have to be related

to each other or to components of a software or system. For example, software

maps represent a specialized approach that "can express and combine information

about software development, software quality, and system dynamics".[4]

6.2 Motivation

"A science is as mature as its measurement tools," (Louis Pasteur in Ebert Dumke,

p. 91). Measuring software quality is motivated by at least two reasons:

 Risk Management: Software failure has caused more than inconvenience.

Software errors have caused human fatalities. The causes have ranged from

poorly designed user interfaces to direct programming errors. An example of

a programming error that led to multiple deaths is discussed in Dr. Leveson's

paper.[5] This resulted in requirements for the development of some types of

software, particularly and historically for software embedded in medical and

other devices that regulate critical infrastructures: "[Engineers who write

embedded software] see Java programs stalling for one third of a second to

perform garbage collection and update the user interface, and they envision

airplanes falling out of the sky.".[6] In the United States, within the Federal

Aviation Administration (FAA), the FAA Aircraft Certification Service

provides software programs, policy, guidance and training, focus on

software and Complex Electronic Hardware that has an effect on the

airborne product (a "product" is an aircraft, an engine, or a propeller).[7]

 Cost Management: As in any other fields of engineering, an application with

good structural software quality costs less to maintain and is easier to

understand and change in response to pressing business needs. Industry data

demonstrate that poor application structural quality in core business

applications (such as Enterprise Resource Planning (ERP), Customer

Relationship Management (CRM) or large transaction processing systems in

financial services) results in cost and schedule overruns and creates waste in

the form of rework (up to 45% of development time in some organizations
[8]). Moreover, poor structural quality is strongly correlated with high-impact

http://en.wikipedia.org/wiki/W._Edwards_Deming
http://en.wikipedia.org/wiki/Information_visualization
http://en.wikipedia.org/wiki/Software_map
http://en.wikipedia.org/wiki/Software_map
http://en.wikipedia.org/wiki/Software_quality#cite_note-4
http://en.wikipedia.org/wiki/Software_quality#CITEREFEbertDumke
http://en.wikipedia.org/wiki/Programming_error
http://en.wikipedia.org/wiki/Software_quality#cite_note-5
http://en.wikipedia.org/wiki/Embedded_software
http://en.wikipedia.org/wiki/Software_quality#cite_note-6
http://en.wikipedia.org/wiki/Federal_Aviation_Administration
http://en.wikipedia.org/wiki/Federal_Aviation_Administration
http://en.wikipedia.org/wiki/Software_quality#cite_note-7
http://en.wikipedia.org/wiki/Business_application
http://en.wikipedia.org/wiki/Business_application
http://en.wikipedia.org/wiki/Enterprise_resource_planning
http://en.wikipedia.org/wiki/Customer_relationship_management
http://en.wikipedia.org/wiki/Customer_relationship_management
http://en.wikipedia.org/wiki/Transaction_processing
http://en.wikipedia.org/wiki/Software_quality#cite_note-8

Page 3 of 11

business disruptions due to corrupted data, application outages, security

breaches, and performance problems.

However, the distinction between measuring and improving software quality in an

embedded system (with emphasis on risk management) and software quality in

business software (with emphasis on cost and maintainability management) is

becoming somewhat irrelevant. Embedded systems now often include a user

interface and their designers are as much concerned with issues affecting usability

and user productivity as their counterparts who focus on business applications. The

latter are in turn looking at ERP or CRM system as a corporate nervous system

whose uptime and performance are vital to the well-being of the enterprise. This

convergence is most visible in mobile computing: a user who accesses an ERP

application on their smartphone is depending on the quality of software across all

types of software layers.

Both types of software now use multi-layered technology stacks and complex

architecture so software quality analysis and measurement have to be managed in a

comprehensive and consistent manner, decoupled from the software's ultimate

purpose or use. In both cases, engineers and management need to be able to make

rational decisions based on measurement and fact-based analysis in adherence to

the precept "In God (we) trust. All others bring data". ((mis-)attributed to W.

Edwards Deming and others).

CISQ's quality model

Even though "quality is a perceptual, conditional and somewhat subjective attribute

and may be understood differently by different people" (as noted in the article on

quality in business), software structural quality characteristics have been clearly

defined by the Consortium for IT Software Quality (CISQ). Under the guidance of

Bill Curtis, co-author of the Capability Maturity Model framework and CISQ's first

Director; and Capers Jones, CISQ's Distinguished Advisor, CISQ has defined five

major desirable characteristics of a piece of software needed to provide business

value.[18] In the House of Quality model, these are "Whats" that need to be

achieved:

 Reliability: An attribute of resiliency and structural solidity. Reliability

measures the level of risk and the likelihood of potential application failures.

It also measures the defects injected due to modifications made to the

software (its “stability” as termed by ISO). The goal for checking and

monitoring Reliability is to reduce and prevent application downtime,

http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/W._Edwards_Deming#Quotations_and_concepts
http://en.wikipedia.org/wiki/W._Edwards_Deming
http://en.wikipedia.org/wiki/W._Edwards_Deming
http://en.wikipedia.org/wiki/Quality_(business)
http://en.wikipedia.org/wiki/Dr_Bill_Curtis
http://en.wikipedia.org/wiki/Capability_Maturity_Model
http://en.wikipedia.org/wiki/Capers_Jones
http://en.wikipedia.org/wiki/Business_value
http://en.wikipedia.org/wiki/Business_value
http://en.wikipedia.org/wiki/Software_quality#cite_note-18
http://en.wikipedia.org/wiki/House_of_Quality
http://en.wikipedia.org/wiki/Reliability_(engineering)

Page 4 of 11

application outages and errors that directly affect users, and enhance the

image of IT and its impact on a company’s business performance.

 Efficiency: The source code and software architecture attributes are the

elements that ensure high performance once the application is in run-time

mode. Efficiency is especially important for applications in high execution

speed environments such as algorithmic or transactional processing where

performance and scalability are paramount. An analysis of source code

efficiency and scalability provides a clear picture of the latent business risks

and the harm they can cause to customer satisfaction due to response-time

degradation.

 Security: A measure of the likelihood of potential security breaches due to

poor coding practices and architecture. This quantifies the risk of

encountering critical vulnerabilities that damage the business.

 Maintainability: Maintainability includes the notion of adaptability,

portability and transferability (from one development team to another).

Measuring and monitoring maintainability is a must for mission-critical

applications where change is driven by tight time-to-market schedules and

where it is important for IT to remain responsive to business-driven changes.

It is also essential to keep maintenance costs under control.

 Size: While not a quality attribute per se, the sizing of source code is a

software characteristic that obviously impacts maintainability. Combined

with the above quality characteristics, software size can be used to assess the

amount of work produced and to be done by teams, as well as their

productivity through correlation with time-sheet data, and other SDLC-

related metrics.

Software functional quality is defined as conformance to explicitly stated

functional requirements, identified for example using Voice of the Customer

analysis (part of the Design for Six Sigma toolkit and/or documented through use

cases) and the level of satisfaction experienced by end-users. The latter is referred

as to as usability and is concerned with how intuitive and responsive the user

interface is, how easily simple and complex operations can be performed, and how

useful error messages are. Typically, software testing practices and tools ensure

that a piece of software behaves in compliance with the original design, planned

user experience and desired testability, i.e. a piece of software's disposition to

support acceptance criteria.

The dual structural/functional dimension of software quality is consistent with the

model proposed in Steve McConnell's Code Complete which divides software

characteristics into two pieces: internal and external quality characteristics.

http://en.wikipedia.org/wiki/Efficiency
http://en.wikipedia.org/wiki/Security
http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Voice_of_the_Customer
http://en.wikipedia.org/wiki/Design_for_Six_Sigma
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Error_messages
http://en.wikipedia.org/wiki/Software_testability
http://en.wikipedia.org/wiki/Steve_McConnell
http://en.wikipedia.org/wiki/Code_Complete

Page 5 of 11

External quality characteristics are those parts of a product that face its users,

where internal quality characteristics are those that do not.[19]

Alternative approaches

One of the challenges in defining quality is that "everyone feels they understand

it"[20] and other definitions of software quality could be based on extending the

various descriptions of the concept of quality used in business.

Dr. Tom DeMarco has proposed that "a product's quality is a function of how

much it changes the world for the better."[21] This can be interpreted as meaning

that functional quality and user satisfaction are more important than structural

quality in determining software quality.

Another definition, coined by Gerald Weinberg in Quality Software Management:

Systems Thinking, is "Quality is value to some person." [22][23] This definition

stresses that quality is inherently subjective—different people will experience the

quality of the same software differently. One strength of this definition is the

questions it invites software teams to consider, such as "Who are the people we

want to value our software?" and "What will be valuable to them?".

Measurement

Although the concepts presented in this section are applicable to both structural

and functional software quality, measurement of the latter is essentially performed

through testing [see main article: Software Testing].

Introduction

Relationship between software desirable characteristics (right) and measurable

attributes (left).

Software quality measurement is about quantifying to what extent a system or

software possesses desirable characteristics. This can be performed through

qualitative or quantitative means or a mix of both. In both cases, for each desirable

characteristic, there are a set of measurable attributes the existence of which in a

piece of software or system tend to be correlated and associated with this

characteristic. For example, an attribute associated with portability is the number

of target-dependent statements in a program. More precisely, using the Quality

Function Deployment approach, these measurable attributes are the "hows" that

need to be enforced to enable the "whats" in the Software Quality definition above.

http://en.wikipedia.org/wiki/Software_quality#cite_note-19
http://en.wikipedia.org/wiki/Software_quality#cite_note-20
http://en.wikipedia.org/wiki/Quality_(business)#Notable_definitions
http://en.wikipedia.org/wiki/Tom_DeMarco
http://en.wikipedia.org/wiki/Software_quality#cite_note-21
http://en.wikipedia.org/wiki/Gerald_Weinberg
http://en.wikipedia.org/wiki/Software_quality#cite_note-22
http://en.wikipedia.org/wiki/Software_quality#cite_note-22
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Quality_Function_Deployment
http://en.wikipedia.org/wiki/Quality_Function_Deployment

Page 6 of 11

The structure, classification and terminology of attributes and metrics applicable to

software quality management have been derived or extracted from the ISO 9126-3

and the subsequent ISO/IEC 25000:2005 quality model. The main focus is on

internal structural quality. Subcategories have been created to handle specific areas

like business application architecture and technical characteristics such as data

access and manipulation or the notion of transactions.

The dependence tree between software quality characteristics and their measurable

attributes is represented in the diagram on the right, where each of the 5

characteristics that matter for the user (right) or owner of the business system

depends on measurable attributes (left):

 Application Architecture Practices

 Coding Practices

 Application Complexity

 Documentation

 Portability

 Technical & Functional Volume

One of the founding member of the Consortium for IT Software Quality, the OMG

(Object Management Group), has published an article on "How to Deliver

Resilient, Secure, Efficient, and Easily Changed IT Systems in Line with CISQ

Recommendations" that states that correlations between programming errors and

production defects unveil that basic code errors account for 92% of the total errors

in the source code. These numerous code-level issues eventually count for only

10% of the defects in production. Bad software engineering practices at the

architecture levels account for only 8% of total defects, but consume over half the

effort spent on fixing problems, and lead to 90% of the serious reliability, security,

and efficiency issues in production.[24]

Code-based analysis

Many of the existing software measures count structural elements of the

application that result from parsing the source code for such individual instructions

(Park, 1992),[25] tokens (Halstead, 1977),[26] control structures (McCabe, 1976), and

objects (Chidamber & Kemerer, 1994).[27]

Software quality measurement is about quantifying to what extent a system or

software rates along these dimensions. The analysis can be performed using a

qualitative or quantitative approach or a mix of both to provide an aggregate view

http://en.wikipedia.org/wiki/ISO_9126
http://en.wikipedia.org/wiki/CISQ
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Software_quality#cite_note-24
http://en.wikipedia.org/wiki/Software_quality#cite_note-25
http://en.wikipedia.org/wiki/Software_quality#cite_note-26
http://en.wikipedia.org/wiki/Software_quality#cite_note-27

Page 7 of 11

[using for example weighted average(s) that reflect relative importance between

the factors being measured].

This view of software quality on a linear continuum has to be supplemented by the

identification of discrete Critical Programming Errors. These vulnerabilities may

not fail a test case, but they are the result of bad practices that under specific

circumstances can lead to catastrophic outages, performance degradations, security

breaches, corrupted data, and myriad other problems (Nygard, 2007)[28] that make a

given system de facto unsuitable for use regardless of its rating based on

aggregated measurements. A well-known example of vulnerability is the Common

Weakness Enumeration (Martin, 2001),[29] a repository of vulnerabilities in the

source code that make applications exposed to security breaches.

The measurement of critical application characteristics involves measuring

structural attributes of the application's architecture, coding, and in-line

documentation, as displayed in the picture above. Thus, each characteristic is

affected by attributes at numerous levels of abstraction in the application and all of

which must be included calculating the characteristic’s measure if it is to be a

valuable predictor of quality outcomes that affect the business. The layered

approach to calculating characteristic measures displayed in the figure above was

first proposed by Boehm and his colleagues at TRW (Boehm, 1978)[30] and is the

approach taken in the ISO 9126 and 25000 series standards. These attributes can be

measured from the parsed results of a static analysis of the application source code.

Even dynamic characteristics of applications such as reliability and performance

efficiency have their causal roots in the static structure of the application.

Structural quality analysis and measurement is performed through the analysis of

the source code, the architecture, software framework, database schema in

relationship to principles and standards that together define the conceptual and

logical architecture of a system. This is distinct from the basic, local, component-

level code analysis typically performed by development tools which are mostly

concerned with implementation considerations and are crucial during debugging

and testing activities.

Reliability

The root causes of poor reliability are found in a combination of non-compliance

with good architectural and coding practices. This non-compliance can be detected

by measuring the static quality attributes of an application. Assessing the static

attributes underlying an application’s reliability provides an estimate of the level of

http://en.wikipedia.org/wiki/Software_quality#CriticalProgrammingErrors
http://en.wikipedia.org/wiki/Software_quality#cite_note-28
http://en.wikipedia.org/wiki/Software_quality#cite_note-29
http://en.wikipedia.org/wiki/Software_quality#cite_note-30
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Database_schema
http://en.wikipedia.org/wiki/Development_tool
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Software_testing

Page 8 of 11

business risk and the likelihood of potential application failures and defects the

application will experience when placed in operation.

Assessing reliability requires checks of at least the following software engineering

best practices and technical attributes:

 Application Architecture Practices

 Coding Practices

 Complexity of algorithms

 Complexity of programming practices

 Compliance with Object-Oriented and

Structured Programming best practices

(when applicable)

 Component or pattern re-use ratio

 Dirty programming

 Error & Exception handling

(for all layers - GUI, Logic &

Data)

 Multi-layer design

compliance

 Resource bounds

management

 Software avoids patterns that

will lead to unexpected

behaviors

 Software manages data

integrity and consistency

 Transaction complexity level

Depending on the application architecture and the third-party components used

(such as external libraries or frameworks), custom checks should be defined along

the lines drawn by the above list of best practices to ensure a better assessment of

the reliability of the delivered software.

Efficiency

As with Reliability, the causes of performance inefficiency are often found in

violations of good architectural and coding practice which can be detected by

measuring the static quality attributes of an application. These static attributes

predict potential operational performance bottlenecks and future scalability

problems, especially for applications requiring high execution speed for handling

complex algorithms or huge volumes of data.

Assessing performance efficiency requires checking at least the following software

engineering best practices and technical attributes:

 Application Architecture Practices

 Appropriate interactions with expensive and/or remote resources

Page 9 of 11

 Data access performance and data management

 Memory, network and disk space management

 Coding Practices

 Compliance with Object-Oriented and Structured Programming best

practices (as appropriate)

 Compliance with SQL programming best practices

Maintainability

 Maintainability includes concepts of modularity, understandability,

changeability, testability, reusability, and transferability from one

development team to another. These do not take the form of critical issues

at the code level. Rather, poor maintainability is typically the result of

thousands of minor violations with best practices in documentation,

complexity avoidance strategy, and basic programming practices that make

the difference between clean and easy-to-read code vs. unorganized and

difficult-to-read code.[33]

Maintainability is closely related to Ward Cunningham's concept of technical debt,

which is an expression of the costs resulting of a lack of maintainability. Reasons

for why maintainability is low can be classified as reckless vs. prudent and

deliberate vs. inadvertent,[34] and often have their origin in developers' inability,

lack of time and goals, their carelessness and discrepancies in the creation cost of

and benefits from documentation and, in particular, maintainable source code.[35]

Size

Measuring software size requires that the whole source code be correctly gathered,

including database structure scripts, data manipulation source code, component

headers, configuration files etc. There are essentially two types of software sizes to

be measured, the technical size (footprint) and the functional size:

 There are several software technical sizing methods that have been widely

described. The most common technical sizing method is number of Lines Of

Code (#LOC) per technology, number of files, functions, classes, tables, etc.,

from which backfiring Function Points can be computed;

 The most common for measuring functional size is Function Point Analysis.

Function Point Analysis measures the size of the software deliverable from a

user’s perspective. Function Point sizing is done based on user requirements

http://en.wikipedia.org/wiki/Software_quality#cite_note-33
http://en.wikipedia.org/wiki/Technical_debt
http://en.wikipedia.org/wiki/Software_quality#cite_note-34
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_quality#cite_note-35
http://en.wikipedia.org/wiki/Software_Sizing
http://en.wikipedia.org/wiki/Function_Point

Page 10 of 11

and provides an accurate representation of both size for the

developer/estimator and value (functionality to be delivered) and reflects the

business functionality being delivered to the customer. The method includes

the identification and weighting of user recognizable inputs, outputs and data

stores. The size value is then available for use in conjunction with numerous

measures to quantify and to evaluate software delivery and performance

(Development Cost per Function Point; Delivered Defects per Function

Point; Function Points per Staff Month.).

The Function Point Analysis sizing standard is supported by the International

Function Point Users Group (IFPUG). It can be applied early in the software

development life-cycle and it is not dependent on lines of code like the somewhat

inaccurate Backfiring method. The method is technology agnostic and can be used

for comparative analysis across organizations and across industries.

Since the inception of Function Point Analysis, several variations have evolved

and the family of functional sizing techniques has broadened to include such sizing

measures as COSMIC, NESMA, Use Case Points, FP Lite, Early and Quick FPs,

and most recently Story Points. However, Function Points has a history of

statistical accuracy, and has been used as a common unit of work measurement in

numerous application development management (ADM) or outsourcing

engagements, serving as the "currency" by which services are delivered and

performance is measured.

One common limitation to the Function Point methodology is that it is a manual

process and therefore it can be labor-intensive and costly in large scale initiatives

such as application development or outsourcing engagements. This negative aspect

of applying the methodology may be what motivated industry IT leaders to form

the Consortium for IT Software Quality focused on introducing a computable

metrics standard for automating the measuring of software size while the IFPUG

keep promoting a manual approach as most of its activity rely on FP counters

certifications.

CISQ announced the availability of its first metric standard, Automated Function

Points,to the CISQ membership, in CISQ Technical. These recommendations have

been developed in OMG's Request for Comment format and submitted to OMG's

process for standardization.

Identifying critical programming errors

http://en.wikipedia.org/wiki/Function_Point_Analysis

Page 11 of 11

Critical Programming Errors are specific architectural and/or coding bad practices

that result in the highest, immediate or long term, business disruption risk.

These are quite often technology-related and depend heavily on the context,

business objectives and risks. Some may consider respect for naming conventions

while others – those preparing the ground for a knowledge transfer for example –

will consider it as absolutely critical.

Critical Programming Errors can also be classified per CISQ Characteristics. Basic

example below:

 Reliability

o Avoid software patterns that will lead to unexpected behavior

(Uninitialized variable, null pointers, etc.)

o Methods, procedures and functions doing Insert, Update, Delete,

Create Table or Select must include error management

o Multi-thread functions should be made thread safe, for instance

servlets or struts action classes must not have instance/non-final static

fields

 Efficiency

o Ensure centralization of client requests (incoming and data) to reduce

network traffic

o Avoid SQL queries that don’t use an index against large tables in a

loop

 Security

o Avoid fields in servlet classes that are not final static

o Avoid data access without including error management

o Check control return codes and implement error handling mechanisms

o Ensure input validation to avoid cross-site scripting flaws or SQL

injections flaws

 Maintainability

o Deep inheritance trees and nesting should be avoided to improve

comprehensibility

o Modules should be loosely coupled (fanout, intermediaries,) to avoid

propagation of modifications

o Enforce homogeneous naming conventions

http://en.wikipedia.org/wiki/Uninitialized_variable
http://en.wikipedia.org/wiki/Apache_Struts

